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Abstract

Three recent arguments seek to show that the universal applicability of
unitary quantum theory is inconsistent with the assumption that a well-
conducted measurement always has a definite physical outcome. In this
paper I restate and analyze these arguments. The import of the first two
is diminished by their dependence on assumptions about the outcomes
of counterfactual measurements. But the third argument establishes its
intended conclusion. Even if every well-conducted quantum measurement
we ever make will have a definite physical outcome, this argument should
make us reconsider the objectivity of that outcome.

1 Introduction

Quantum theory is taken to be fundamental to contemporary physics in large
part because countless measurements have yielded outcomes that conform to
its predictions. Experimenters take great care to ensure that each quantum
measurement has an outcome that is not just a subjective impression but an
objective, physical event. However, in the continuing controversy in quantum
foundations QBists ([1], [2]) and others ([3], [4], [5]) have come to question
and even deny the principle that a well-conducted quantum measurement has a
definite, objective, physical outcome. This principle should not be abandoned
lightly: objective data provide the platform on which scientific knowledge rests.1

We should demand a water-tight argument before giving it up.
In this paper I analyze three recent arguments that quantum theory, consis-

tently applied, entails that not every quantum measurement can have a definite,
objective, physical outcome. I say ‘can have’, not ‘has’, because each argument

1Even if no item of data is so certain as to be immune from rejection in the light of further
scientific investigation. Recall Popper’s ([6], p. 94) famous metaphor:
“Science does not rest upon solid bedrock. The bold structure of its theories rises, as it

were, above a swamp. It is like a building erected on piles. The piles are driven down from
above into the swamp, but not down to any natural or ‘given’base; and if we stop driving
the piles deeper, it is not because we have reached firm ground. We simply stop when we are
satisfied that the piles are firm enough to carry the structure, at least for the time being.”
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requires aGedankenexperiment far more extreme even than that of Schrödinger’s
cat. The first two arguments’dependence on questionable implicit assumptions
severely limits their significance. But I think the third argument at least suc-
ceeds in deflating a certain ideal of objectivity in the quantum domain. I assume
throughout that an outcome of a quantum measurement is definite only if it is
unique– an assumption rejected by Everettians such as Deutsch [7] and Wallace
[8]. Assuming the objectivity of a physical outcome, an Everettian may take
an argument like these considered here as offered in support of that outcome’s
non-uniqueness, as suggested by the title of [12].

2 Brukner’s Argument

Brukner’s argument ([3], [4]) applies Bell’s theorem [9] to an extension of Wigner’s
[10] friend scenario. My restatement of the most recent version [4] of his argu-
ment renames Brukner’s characters and introduces clarifying notation.
Before describing his own Gedankenexperiment, Brukner considers Deutsch’s

[7] twist on Wigner’s original friend scenario. So consider first a scenario in
which Zeus2 is contemplating possible measurements on Xena’s otherwise phys-
ically isolated lab X, inside which Xena has measured the z-spin of a single
spin-1/2 particle 1 prepared in the superposed state in the z-spin basis

|x〉1 = 1/
√

2(|↑〉1 + |↓〉1) (1)

Assuming the universal applicability of unitary quantum mechanics, Zeus as-
signs to the combined system 1X after Xena’s measurement the entangled state

|Φ〉1X = 1/
√

2(|↑〉1 |“up”〉X + |↓〉1 |“down”〉X), (2)

where |“up”〉X (for example) represents a state in which if Zeus were to observe
the contents of Xena’s lab he would certainly (with probability 1) find her
reporting the outcome of her measurement of z-spin on particle 1 as +~/2 and
that her recording device had indeed recorded that value.
Zeus can try to verify his assignment of state |Φ〉1X by performing a mea-

surement of a dynamical variable Ax represented by the operator Âx onH1⊗HX

Âx = |↑〉1 |“up”〉X 〈↓|1 〈“down”|X + |↓〉1 |“down”〉X 〈↑|1 〈“up”|X . (3)

This measurement will (with probability 1) yield the outcome +1 while leaving
the state |Φ〉1X undisturbed. After this successful verification, Zeus’s apparatus
and memory establish the truth of statement A+

x : “Zeus’s outcome is Ax = +1”
and the falsity of A−x : “Zeus’s outcome is Ax = −1.”But despite his entangled
state assignment, Zeus may have some reason to believe that Xena has indeed
observed a definite outcome of her measurement of z-spin.

As Deutsch [7] pointed out, no violation of unitary quantum theory is in-
volved if Xena passes a message out of her lab to Zeus reporting that she has

2Brukner calls this character Wigner, but I have reserved that name for another character
with analogous powers.
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seen a definite outcome, as long as this contains no information about what that
outcome was. Zeus may try to see for himself whether Xena has seen a definite
outcome by performing his own measurement on her lab and its contents, of a
dynamical variable Az represented by the operator Âz on H1 ⊗HX

Âz = |↑〉1 |“up”〉X 〈↑|1 〈“up”|X − |↓〉1 |“down”〉X 〈↓|1 〈“down”|X . (4)

If Zeus’s outcome is Az = +1 he may judge this to verify the statement A+
z :

“Xena’s outcome is z+,”and falsify A−z : “Xena’s outcome is z
−”, while outcome

Az = −1 reverses these judgments. These judgments are not warranted by the
(false) assumption that an ideal quantum measurement just faithfully reveals the
pre-existing value of the measured variable. Instead, their warrant rests on the
assumption that Xena’s outcome is accessible to other observers by consulting
her records. Failure of such intersubjectivity would undermine Xena’s outcome’s
claim to objectivity, at least in this epistemic sense.
Since the measurement of Ax leaves the state |Φ〉1X unchanged, Zeus may

first perform that measurement to establish the truth of A+
x , then measure Az

to verify the truth of A+
z (or, alternatively, of A−z ). So in this preliminary

scenario Zeus has some reason to believe that not only his own measurements
but also Xena’s measurement had a definite, physical outcome. Moreover, if he
measures only Ax he can then pass a message with its outcome to Xena, also
without disturbing the state |Φ〉1X : so Xena, too, will have reason to believe
that both A+

x and A
+
z (or A

−
z ) are true and that Zeus’s measurement of Ax as

well as her own measurement of 1’s z-spin had a definite, physical outcome.
Now consider the statements c(A+

x ): “A+
x would be true if Zeus were to

measure Ax”, c(A−x ): “A−x would be true if Zeus were to measure Ax”; c(A
+
z ):

“Zeus’s outcome would be Az = +1 if he were to measure Az”, c(A−z ): “Zeus’s
outcome would be Az = −1 if he were to measure Az”. Zeus has reason to
believe c(A+

x ) is true and c(A−x ) is false whether or not he measures Ax, since
|Φ〉1X predicts the truth of A+

x (with probability 1). Whether or not he measures
Az, Zeus has reason to believe that one of c(A+

z ), c(A−z ) is true while the other is
false in state |Φ〉1X . Assuming measurements have definite, objective outcomes,
he should take his conditional outcome simply to reflect Xena’s actual outcome:
Xena got z+ if and only if Zeus would get +1, while Xena got z− if and only
if Zeus would get −1. Provided that Xena’s measurement had a definite actual
outcome it follows that exactly one of c(A+

z ) or c(A−z ) is true.
After analyzing this preliminary scenario, Brukner [4] introduces his own,

more complex, Gedankenexperiment. Each of Xena and Yvonne is located in
a separate laboratory. These laboratories are initially completely physically
isolated, and this isolation is preserved except for the processes specified below.
An entangled pair of spin-1/2 particles is prepared, with particle 1 in Xena’s
lab X and particle 2 in Yvonne’s lab Y . In [4] the initial state assigned to 12
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(in the z-spin basis) is

|ψ〉12 = − sin θ/2
∣∣φ+

〉
12

+ cos θ/2
∣∣ψ−〉

12
, where (5)∣∣φ+

〉
12

= 1/
√

2(|↑〉1 |↑〉2 + |↓〉1 |↓〉2)∣∣ψ−〉
12

= 1/
√

2(|↑〉1 |↓〉2 − |↓〉1 |↑〉2).

Then Xena measures the z-spin of particle 1 in her lab, while Yvonne measures
the z-spin of particle 2 in her lab. Assume that the measurement in each labora-
tory has a definite, physical outcome, registered by a particle detector, recorded
in a computer (or on paper) and experienced by Xena or Yvonne respectively.
Each of Zeus and Wigner is also located in a separate laboratory. Xena’s lab-

oratory is located wholly within Zeus’s, while Yvonne’s is located wholly within
Wigner’s. But to this point each laboratory has remained completely physically
isolated insofar as there has been no direct physical interaction between any of
these four laboratories.
Assuming (no-collapse) quantum theory is universally applicable, there is

a correct quantum state for Zeus and Wigner to assign to the joint physical
system consisting of the entire contents of both Xena’s and Yvonne’s labora-
tories and this state evolved unitarily throughout the interactions involved in
each of their spin-component measurements. (Note that in assigning this state,
Zeus and Wigner are here treating Xena and Yvonne themselves as quantum
(sub)systems.) Assuming for simplicity that the spin-component measurements
were non-disturbing, we may write this joint state after Xena’s and Yvonne’s
measurements as

|Ψ〉12XY = − sin θ/2
∣∣Φ+

〉
+ cos θ/2

∣∣Ψ−〉 , where (6)∣∣Φ+
〉

= 1/
√

2 (|Aup〉 |Bup〉+ |Adown〉 |Bdown〉)∣∣Ψ−〉 = 1/
√

2 (|Aup〉 |Bdown〉 − |Adown〉 |Bup〉) .

Here X represents the entire contents of Xena’s lab (including Xena) and Y
represents the entire contents of Yvonne’s lab (including Yvonne), except the
measured particles 1, 2. |Aup〉, |Adown〉 are eigenstates of Âz.

We may define an analogous pair of self-adjoint operators on H2 ⊗ HY as
follows:

B̂z = |↑〉2 |“up”〉Y 〈↑|2 〈“up”|Y − |↓〉2 |“down”〉Y 〈↓|2 〈“down”|Y
B̂x = |↑〉2 |“up”〉Y 〈↓|2 〈“down”|Y + |↓〉2 |“down”〉Y 〈↑|2 〈“up”|Y

where magnitude Bz on 2Y uniquely corresponds to B̂z and Bx to B̂x. The state
(6) predicts that the statistics of the (assumed, definite) outcomes of Zeus’s and
Wigner’s measurements will violate the associated Clauser-Horne-Shimony-Holt
inequality

S = 〈AzBz〉+ 〈AzBx〉+ 〈AxBz〉 − 〈AxBx〉 ≤ 2 (CHSH)
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in which 〈AxBz〉, for example, is the correlation function of a probability distri-
bution for the outcomes of measurements of magnitudes Ax, Bz. The inequality
CHSH is violated, for example, by state |Ψ〉12XY for which S = 2

√
2 if θ = π/4.

Suppose that the sequence of measurements by Xena, Yvonne, Zeus and
Wigner is repeated in many trials, with Zeus’s measurement of Ax or Az and
Wigner’s measurement of Bx or Bz varied randomly and independently from
trial to trial. Violation of (CHSH) by statistics collected in a large number of
such trials is perfectly consistent with the assumption

Definite Outcomes: In every such trial each of Xena’s, Yvonne’s,
Zeus’s and Wigner’s measurements has a definite, physical outcome.

The assumption of Definite Outcomes does not even make it unlikely that
a large number of Zeus’s and Wigner’s outcomes in repeated trials will display
correlations in violation of (CHSH). Indeed the Born rule predicts that the
outcomes of Zeus’s and Wigner’s measurements will violate CHSH: if θ = π/4
then S = 2

√
2. Why might one think otherwise?

Brukner [4] takes his argument to disprove the following postulate

Postulate (“Observer-independent facts”) The truth-values of the
propositions Ai of all observers form a Boolean algebra A. Moreover,
the algebra is equipped with a (countably additive) positive measure
p(A) = 0 for all statements A ∈ A, which is the probability for the
statements to be true.

To evaluate the bearing of his argument on the assumption of Definite Out-
comes one must specify propositions purporting to describe such outcomes.
Brukner’s discussion of the preliminary scenario suggests these include A+

z ,
A−z , A

+
x , and A

−
x . The symmetry of the Gedankenexperiment further suggests

they include propositions B+
z , B

−
z , B

+
x and B−x , each of which states the out-

come of an analogous measurement by Yvonne or by Wigner. Is there any
reason to believe that application of Brukner’s Postulate to the propositions
B = {A+

z , A
−
z , B

+
z , B

−
z , A

+
x , A

−
x , B

+
x , B

−
x } yields the promised no-go therem?

In no repetition are both Ax and Az measured– the experimental arrange-
ments are mutually exclusive, as are those for Bx and Bz. If Ax is not measured,
then neither A+

x nor A−x describes an actual outcome: and if Bx is not mea-
sured, then neither B+

x nor B−x describes an actual outcome. So unless Ax,
Bx are measured in a repetition, the propositions of all observers that describe
the actual definite outcomes assumed by Definite Outcomes is not the whole
of B but merely a compatible subset B∗ forming a Boolean algebra which may
readily be equipped with a (countably additive) positive measure: just use the
Born probabilities from state (6) and extend this to each proposition describing
the outcome of an actual measurement by Xena or by Yvonne by equating its
outcome to that of the corresponding measurement by Zeus or by Wigner (so,
for example, A+

z is true if and only if the outcome of Zeus’s measurement of Az
is Az = +1, and both propositions have the same probability).
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If Ax, Bx are measured in a repetition, the propositions of all observers
describing the actual definite outcomes assumed by Definite Outcomes is the
whole of B. But the propositions {A+

x , A
−
x , B

+
x , B

−
x } form a Boolean algebra

whose structure is respected by the obvious truth-assignments, and the Born
probabilities from (6) define a probability measure on this algebra. In the ab-
sence of any further constraints it is easy to extend this truth-assignment and
probability measure to the full algebra B.

So the assumed actual outcomes in each trial can certainly be described by
propositions Ai of all observers forming a Boolean algebra A. Moreover, this
algebra may be equipped with a (countably additive) positive measure p(A) = 0
for all statements A ∈ A, which may be taken as the probability for the state-
ments to be true in that trial. A no-go therorem is not derivable through the
application of Definite Outcomes to propositions Ai of all observers that describe
their actual outcomes in any, or all, repetitions of Brukner’s Gedankenexperi-
ment.
What happens if instead the “propositions of all observers”concern not their

actual but their hypothetical outcomes? Consider the set
c(B) = {c(A+

z ), c(A−z ), c(B+
z ), c(B−z ), c(A+

x ), c(A−x ), c(B+
x ), c(B−x )} of subjunc-

tive conditionals describing the outcomes of hypothetical measurements. As-
sume that if such a measurement is actually made in a trial then the correspond-
ing conditional has the same truth-value as its consequent (so, for example, if Ax
is measured with outcome Ax = +1 then c(A+

x ) is true as well as A+
x ). Unlike

the simpler scenario discussed earlier, when A+
x , A

−
x are replaced by the corre-

sponding subjunctive statements c(A+
x ), c(A−x ): “If Ax were measured then the

definite outcome would be +1 (−1)”, in state (6) there is no reason to suppose
that either of these statements even has a truth-value if Zeus does not measure
Ax. Nor should c(B+

x ), c(B−x ) be expected to have truth-values when Wigner
does not measure Bx.
Unless Ax,Bx are both measured in a trial, replacement of propositions about

actual definite outcomes of a measurement by such conditionals fails to generate
a Boolean algebra of propositions of all observers whose truth-value assignment
respects that algebra. But quantum theory predicts violation of the inequality
CHSH only for the outcomes of actual measurements. Because of the physical
incompatibility of Zeus’s joint measurement of Ax and Az and of Wigner’s
measurement of Bx and Bz, these predictions must concern four distinct kinds
of trials, which is what necessitated variation of measurements by Zeus and by
Wigner from trial to trial. Definite Outcomes implies that the set c(B) forms
a Boolean algebra whose structure is respected by a joint truth-assignment and
is equipped with a (countably additive) positive measure at most in the case
of a repetition in which Zeus measures Ax and Wigner measures Bx. So the
violation of that inequality in state (6) does not refute Definite Outcomes. As
it stands, Brukner’s argument ([3], [4]) provides no good reason to doubt that
every quantum measurement has a definite, objective, physical outcome.
In correspondence, Brukner has proposed a slight modification that avoids

this objection and promises to strengthen the argument. In the modified sce-
nario, Zeus measures Ax and Wigner measures Bx in every trial. As in the
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simpler Wigner’s friend scenario, Zeus may appeal to the epistemic objectivity
of Xena’s outcome to infer that c(A+

z ) has the same truth-value as A+
z , and

c(A−z ) has the same truth-value as A−z .
3 Since Definite Outcomes implies that

one of A+
z , A

−
z is true and the other false, it then follows that in every repeti-

tion one of c(A+
z ), c(A−z ) is true and the other false, even though Zeus actually

measures Ax and not Az in that repetition. Similarly, in every repetition one
of c(B+

z ), c(B−z ) is true and the other is false. So in each repetition the set
of propositions {c(A+

z ), c(A−z ), c(B+
z ), c(B−z )} always forms a Boolean algebra

whose truth-value assignment and probability distribution follow from those as-
signed to the assumed actual outcomes of Xena’s and Yvonne’s measurements.
This will be true in every trial of this modified scenario.
Definite Outcomes now implies that every proposition in the full algebra

c(B) has a truth-value and these truth-values respect the algebra’s structure.
Moreover, any (countably additive) positive measure p(A) = 0 for all statements
in c(B)must be constrained by a transformed inequality obtained from CHSH by
replacing each reference to an actual outcome by a reference to the corresponding
hypothetical outcome (though for Ax,Bx the hypothetical outcome is the actual
outcome). If quantum theory were to predict violation of this transformed
inequality then it would imply that Definite Outcomes is false.
But quantum theory predicts probabilities only for the outcomes of actual

measurements, and neither Az nor Bz is actually measured in this modified
scenario. Only Ax, Bx and the z-spins of 1,2 are measured in each trial, and
quantum theory makes no predictions of the joint probability distribution for
Zeus’s and Yvonne’s pairs of measurement outcomes, or that for Wigner’s and
Xena’s pairs of measurement outcomes. This is to be expected, since even if
Definite Outcomes is true, these outcome pairs are not epistemically accessible
by any observer (including the four agents named in this scenario), so their
statistics are of no scientific interest.

3 Frauchiger and Renner’s Argument

Here is a simplified restatement of the argument of Frauchiger and Renner ([12],
[13]). The appendix compares its strategy to that of the arguments on which it
is based and supplies a translation to the notation of [13].
Four physical observers are each located in their own separate laboratories.

Every laboratory is initially completed physically isolated, and this isolation is
preserved except for the processes specified below. In one laboratory observer
Xena has prepared a "biased quantum coin" c in state

|ready〉c =
1√
3
|heads〉c +

√
2√
3
|tails〉c . (7)

3Though this inference is now questionable, since in this context the antecedent "Zeus
measures Az" of the counterfactuals c(A

+
z ), c(A

−
z ) is not merely false but incompatible with

Zeus’s actual measurement of Ax.
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At time t = 0 Xena "flips the coin" by implementing a measurement on c
of observable f with orthonormal eigenstates |heads〉c, |tails〉c by means of a
unitary interaction with c.

|ready〉c |ready〉X− =⇒ |ψ〉0cX− =
1√
3
|heads〉0c |heads〉X−+

√
2√
3
|tails〉0c |tails〉X− .

(8)
Here and elsewhere I put a numerical superscript n on a state to mark its unitary
evolution up to just after time t = n. X− is a system representing the entire
contents of Xena’s lab (including Xena herself, but neither c nor a qubit system
s whose state she is about to prepare), while X is X−+ c. |heads〉X− , |tails〉X−

are orthonormal eigenstates of a binary indicator observable on X whose eigen-
value x = 1 represents Xena’s outcome “heads”and whose eigenvalue x = −1
represents Xena’s outcome “tails”.

x̂ |heads〉X− = |heads〉X− (9)

x̂ |tails〉X− = − |tails〉X− .

Assume Xena’s measurement of f on c has a unique, physical outcome: either
“heads”or “tails”.
At time t = 1, if the outcome was “heads”, Xena prepares the state of a qubit

system s in her lab in state |↓〉s: if the outcome was “tails”, Xena prepares s
in state |→〉s = 1/

√
2(|↓〉s + |↑〉s). Xena can do this by means of a unitary

interaction between s and X, yielding the following state

|ψ〉1cX−s =
1√
3
|heads〉1c |heads〉

1
X− |↓〉s +

√
2√
3
|tails〉1c |tails〉

1
X− |→〉s (10)

=
1√
3

(
|heads〉1c |heads〉

1
X− |↓〉s + |tails〉1c |tails〉

1
X− |↓〉s + |tails〉1c |tails〉

1
X− |↑〉s

)
.

(11)

Xena then transfers system s out of her lab and into Yvonne’s lab, keeping c in
her own lab.
Let Y − be a system consisting of the entire contents of Yvonne’s lab (in-

cluding Yvonne but not the system s transferred to her by Xena), while Y is
Y −+ s. At time t = 2 Yvonne measures observable Sz on s with orthonormal
eigenstates |↓〉2s, |↑〉

2
s by means of another unitary interaction within her lab,

yielding state

|ψ〉2cX−sY − =
1√
3


|heads〉2c |heads〉

2
X− |↓〉2s |−1/2〉Y − +

|tails〉2c |tails〉
2
X− |↓〉2s |−1/2〉Y − +

|tails〉2c |tails〉
2
X− |↑〉2s |+1/2〉Y −

 (12)

which we can rewrite as

|ψ〉2XY =
1√
3

(|heads〉X |−1/2〉Y + |tails〉X |−1/2〉Y + |tails〉X |+1/2〉Y ). (13)
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Let y be a binary indicator observable on Y whose eigenvalue y = 1 represents
Yvonne’s outcome “+1/2”and whose eigenvalue y = −1 represents Yvonne’s
outcome “−1/2”.

ŷ |+1/2〉Y = |+1/2〉Y (14)

ŷ |−1/2〉Y = − |−1/2〉Y .

Assume Yvonne’s measurement of Sz on s has a unique, physical outcome:
either “+1/2”or “−1/2”.
The state (13) of XY just after t = 2 may also be expressed as

|ψ〉2XY =
1√
3

(
√

2 |fail〉X |−1/2〉Y + |tails〉X |+1/2〉Y ) (13a)

=
1√
3

(|heads〉X |−1/2〉Y +
√

2 |tails〉X |fail〉Y ) (13b)

=
1

2
√

3
(3 |fail〉X |fail〉Y + |fail〉X |OK〉Y − |OK〉X |fail〉Y + |OK〉X |OK〉Y )

(13c)

where the states |fail〉X , |OK〉X are defined by

|OK〉X =
1√
2

(|heads〉X − |tails〉X) (15)

|fail〉X =
1√
2

(|heads〉X + |tails〉X)

and the states |fail〉Y , |OK〉Y are defined by

|OK〉Y =
1√
2

(|−1/2〉Y − |+1/2〉Y ) (16)

|fail〉Y =
1√
2

(|−1/2〉Y + |+1/2〉Y ).

At time t = 3 Zeus measures observable z on X with orthonormal eigenstates
|fail〉3X , |OK〉

3
X and records a unique, physical outcome: either “fail”, or “OK”.

At time t = 4 Wigner measures observable w on Y with orthonormal eigenstates
|fail〉4Y , |OK〉

4
Y and records a unique, physical outcome: either “fail”, or “OK”.

Finally, at t = 5Wigner consults Zeus and notes the outcome of his measurement
of z.
In arriving at the quantum state assignment (13) (and its equivalents),

Wigner has correctly applied unitary quantum theory to the specified inter-
actions. Equation (13c) implies that with probability 1/12 (slightly more than
8%) the outcomes of Zeus’s and Wigner’s measurements will both be “OK”. We
now investigate Wigner’s reasoning about the outcomes of Xena’s and Yvonne’s
measurements in such a case.
Step 1 At t = 5 Zeus tells me that the outcome of his measurement of z on

X at t = 3 was “OK”, so I infer that the unique outcome of his measurement
of z on X at t = 3 was “OK”.
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Step 2 Yvonne measured observable Sz on s at time t = 2. If her outcome
had been “−1/2”and not “+1/2”, then equation (13a) implies (with probability
1) that the unique outcome of Zeus’s measurement of z on X at t = 3 was
“fail” and not “OK”. But I inferred in step 1 that the unique outcome of his
measurement of z on X at t = 3 was “OK”. So I now infer (with probability
1) that the unique outcome of Yvonne’s measurement of observable Sz on s at
time t = 2 was “+1/2”.
Step 3 Xena measured observable f on c at t = 0. If her outcome had been

“heads” and not “tails”, then equation (13) implies (with probability 1) that
the unique outcome of Yvonne’s measurement of Sz on s at time t = 2 was
“−1/2”and not “+1/2”. But I inferred in step 2 that the unique outcome of
Yvonne’s measurement of observable Sz on s at time t = 2 was “+1/2”. So I
now infer (with probability 1) that the unique outcome of Xena’s measurement
of f on c at t = 0 was “tails”.
Step 4* The unique outcome of my measurement of w on Y at t = 4 was

“OK”. But equation (13b) implies (with probability 1) that if the unique out-
come of Xena’s measurement of f on c at t = 0 had been “tails”, the unique
outcome of my measurement of w on Y at t = 4 would have been “fail”. So I
infer that the unique outcome of Xena’s measurement of f on c at t = 0 was
“heads”and not “tails”.
Since the conclusion of step 4* contradicts the conclusion of step 3, Wigner’s

reasoning has here led to a contradiction. The reasoning depended on several
assumptions, at least one of which must be rejected to restore consistency. These
include the three assumptions:
Universality Quantum theory may be applied to all systems, including macro-

scopic apparatus, observers and laboratories.
No collapse When an observable is measured on a quantum system in a

physically isolated laboratory, the state vector correctly assigned by an external
observer to the combined system+laboratory evolves unitarily throughout.
Unique outcome A measurement of an observable has a unique, physical

outcome.
Unique outcome corresponds to what Frauchiger and Renner [13] call (S).

The appendix discusses the relation between these three assumptions and Frauchiger
and Renner’s assumptions (C), (Q), and (S). But step 4* depends on an addi-
tional assumption that should be questioned and, I argue, rejected:
Intervention Insensitivity The truth-value of an outcome-counterfactual is

insensitive to the occurrence of a physically isolated intervening event.
An outcome-counterfactual is a statement of the form Ot1 �→ Ot2 where

Ot states the outcome of a quantum measurement at t, t1 < t2, and A�→ B
means “If A had been the case then B would have been the case”: An event then
intervenes just if it occurs in the interval (t1, t2), and it is physically isolated if
it occurs in a laboratory that is then physically isolated from laboratories where
Ot1 , Ot2 occur.
To see the problem with step 4* of Wigner’s reasoning, focus on the outcome-

counterfactual “If the unique outcome of Xena’s measurement of f on c at
t = 0 had been “tails”, the unique outcome of my measurement of w on Y at
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t = 4 would have been “fail”.” Zeus’s measurement of z on X at t = 3 was
an intervening event that occurred in Zeus’s laboratory Z ∪ X (taken now to
encompass the laboratory X on which he performs his measurement of z). At
t = 3, Z ∪ X is still physically isolated from Y and W . So the assumption of
Intervention Insensitivity would license step 4* of Wigner’s reasoning.
But Intervention Insensitivity actually conflicts with the other assumptions

of the argument. To see why, consider howWigner should apply quantum theory
to Zeus’s measurement of z on X at t = 3, in accordance with Universality and
No collapse. Equation (13a) implies

|ψ〉2XY =
1√
3

[√
2 |fail〉X |−1/2〉Y +

1√
2

(|fail〉X − |OK〉X) |+1/2〉Y
]

(17)

Assume for simplicity that Zeus’s measurement on X is non-disturbing. Wigner
knows that Zeus made a non-disturbing measurement of z on X at t = 3. So
the state he should assign to XY Z immediately following this measurement is

|ψ〉3XY Z =
1√
3

 √2 |fail〉3X |“fail”〉Z |−1/2〉3Y +

+ 1√
2
(|fail〉3X |“fail”〉Z − |OK〉

3
X |“OK”〉Z) |+1/2〉3Y



=
1√
24


|heads〉3X


(

3 |fail〉3Y + |OK〉3Y
)
|“fail”〉Z

+
(
|OK〉3Y − |fail〉

3
Y

)
|“OK”〉Z


+ |tails〉3X


(

3 |fail〉3Y + |OK〉3Y
)
|“fail”〉Z

−
(
|OK〉3Y − |fail〉

3
Y

)
|“OK”〉Z



 (18)

What can Wigner legitimately infer about Xena’s outcome at t = 0? Prior to
t = 4 he has yet to perform his own measurement of w on Y , and prior to t = 5
he remains unaware of the outcome of Zeus’s measurement of z on X at t = 3.
But even before t = 4 Wigner can still use |ψ〉3XY Z to reason hypothetically
about Xena’s outcome, conditional on Zeus’s and his own measurements both
having the outcome “OK”: on learning at t = 5 that these antecedents are true,
he can then infer the truth of the consequent of this conditional. Wigner should
therefore replace the incorrect reasoning of step 4* as follows.
Step 4 Assume Zeus’s measurement of z onX at t = 3 had a unique, physical

outcome and that there are then no interactions among X, Y , Z prior to t = 4.
Then the state of XY Z at t = 4 is

|ψ〉4XY Z =
1√
24


|heads〉4X


(

3 |fail〉4Y + |OK〉4Y
)
|“fail”〉4Z

+
(
|OK〉4Y − |fail〉

4
Y

)
|“OK”〉4Z


+ |tails〉4X


(

3 |fail〉4Y + |OK〉4Y
)
|“fail”〉4Z

−
(
|OK〉4Y − |fail〉

4
Y

)
|“OK”〉4Z



 (19)

Suppose that Wigner’s unique physical outcome on measuring Y at t = 4 were
“OK”. Now consider the hypothesis that Xena’s outcome at t = 0 was “tails”.
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Equation (19) then implies that the probability of Wigner’s outcome “OK”
would have been 1/6. On the alternative hypothesis that Xena’s outcome at
t = 0 was “heads”, equation (19) also implies that the probability of Wigner
getting outcome “OK”would have been 1/6. So if Wigner were to get outcome
“OK” for his measurement at t = 4 his knowledge of this outcome would not
entitle him to infer the outcome of Xena’s measurement at t = 0. Indeed,
application of Bayes’s theorem would lead him to conclude that knowledge of
the outcome of his measurement at t = 4 should have no effect on his estimate of
the probabilities of Xena’s possible outcomes: they remain prob(“heads”) = 1/3,
prob(“tails”) = 2/3 after conditionalizing on either possible outcome of his
measurement at t = 4, and again after further conditionalizing on either possible
outcome of Zeus’s measurement at t = 3.
Consider, for purposes of contrast, how Wigner should reason if he knew

that Zeus performed no measurement at t = 3. In that case he should assign
the following state to XY at t = 4:

|ψ〉4XY =
1√
3

(|heads〉4X |−1/2〉4Y +
√

2 |tails〉4X |fail〉
4
Y ). (20)

Knowledge of the outcome “OK”of his own measurement of w at t = 4 would
then entitle him to conclude (with probability 1) that the outcome of Xena’s
measurement of f on c at t = 0 was “heads”. This conclusion follows by an
inference that parallels step 4* of the reasoning discussed previously. Unlike
step 4* itself, the parallel inference is valid because of the assumption that Zeus
performed no intervening measurement.
But that same assumption invalidates the premise of step 1 of the reasoning

discussed previously. Failing the conclusion of step 1, Wigner would no longer
be entitled to take steps 2 and 3. So if he knew that Zeus performed no measure-
ment at t = 3 then Wigner could no longer validly conclude that the outcome
of Xena’s measurement of f on c at t = 0 was “tails”. In this contrasting case,
Wigner should correctly, and consistently, conclude that the unique outcome of
Xena’s measurement of f on c at t = 0 was “heads”.
The preceding analysis of the two contrasting cases (with, and without,

Zeus’s intervening measurement) shows clearly why Intervention Insensitivity
must be rejected, as inconsistent with Universality and No collapse. But it
may appear to raise a worry about locality. For how can a physically isolated
intervening event like Zeus’s distant measurement on X have such an impact
on Wigner’s reasoning about local matters in this scenario?
The form of the question suggests an answer to the worry it seeks to ex-

press. Zeus’s measurement on X certainly does not influence the outcome of
Xena’s measurement: if it did, the influence would not be non-local but time-
reversed, since Zeus’s measurement occurred later than Xena’s! Xena’s outcome
is what it is, irrespective of Zeus’s measurement. If Zeus’s measurement were
to influence anything it would be Wigner’s outcome, not Xena’s. But Wigner’s
outcome “OK”has the same probability (1/6) whether or not Zeus performs his
measurement. It is only the correlation between Xena’s and Wigner’s outcomes
that differs between the cases where Zeus does and does not measure z on X.
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While Zeus’s measurement modifies this correlation, it does so despite
being causally unrelated to any of its constituent events. This intervention sen-
sitivity is not an instance of non-local causal influence. The suspicion that it
is may arise from the view that correlations in non-separable states like |ψ〉4XY
are causal because they specify probabilistic counterfactual dependence between
the outcomes of distant measurements in violation of Bell inequalities [9]. While
controversy continues [15] as to whether such counterfactual dependence con-
stitutes or evidences non-local influence, there are well-known strategies for
denying that it does.4 So the failure of Intervention Insensitivity raises no new
worry about non-locality.

4 A Third Argument

I first heard this argument in a talk by Matthew Pusey [16], who there credits it
to Luis Masanes. They should not be held responsible for my own restatement
and further development of the argument.
Once again, the argument is set in the context of a Gedankenexperiment fea-

turing four experimenters. For variety I have changed their names to Alice, Bob,
Carol and Dan. But while Carol and Dan perform diffi cult but technically feasi-
ble lab experiments, Alice and Bob are credited with even more extreme abilities
than the Zeus and Wigner who figured in the previous arguments (though their
exercise of these powers involves no violation of unitary quantum theory).
Each of Alice and Bob are in their own separate laboratories, totally physi-

cally isolated except for a shared Bohm-EPR pair of spin-1/2 particles on which
they intend to perform measurements of (normalized) spin-components, one on
each particle from the pair. Alice is to measure magnitude Aa corresponding to
operator Âa with eigenvalues {+1,−1} on particle 1, while Bob is to measure
magnitude Bb corresponding to operator B̂b with eigenvalues {+1,−1} on parti-
cle 2. a, b label two directions in space along which Alice and Bob (respectively)
set the axes of their spin-measuring devices. Alice will choose setting a and
perform measurement of Aa at spacelike-separation from Bob’s choice of setting
b and measurement of Bb.
But before performing these measurements, Alice and Bob first delegate a

similar task to their friends, Carol and Dan respectively. Carol occupies her
own separate laboratory, initially totally physically isolated from Alice’s: Dan
occupies his own separate laboratory, initially totally physically isolated from
Bob’s. Carol and Dan perform measurements on the Bohm-EPR pair: Carol
measures (normalized) spin-component Cc on particle 1, while Dan measures
(normalized) spin-component Dd on particle 2. Carol’s choice of setting c and
measurement of Cc are each spacelike-separated from Dan’s choice of setting d
and measurement of Dd. Assume Carol’s and Dan’s measurements each have a
definite, physical outcome that is registered, recorded and experienced by them
separately in their labs.

4My preferred strategy [14] depends on an interventionist approach to causal influence.
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It is important to note that Alice and Carol both perform their measurements
on the very same particle 1, and that Bob and Dan perform their measurements
on the very same particle 2. To make this possible, after performing Carol’s
measurement particle 1 is transferred out of her lab and into Alice’s lab, and
after performing Dan’s measurement particle 2 is transferred out of his lab and
into Bob’s lab. Assume that measurement causes no physical “collapse”of the
quantum state, so that each spin-measurement proceeds in accordance with a
unitary interaction between the measured particle and the rest of the exper-
imenter’s lab, and that this is consistent with its having a definite, physical
outcome recorded by the experimenter in that lab. It follows that Carol’s mea-
surement entangles the state of her lab C with that of particle 1, while Dan’s
measurement entangles the state of his lab D with that of particle 2.
But Alice and Bob use their superpowers to undo these entanglements by

applying very carefully tailored interactions, in the first case between 1 and
C, and in the second case between 2 and D. This restores C and D to their
original states, and also restores the original spin-entangled state of 1 + 2. That
is how it is possible for Alice and Bob to perform spin-measurements on the
same Bohm-EPR pair as Carol and Dan.
By assumption, we now have a situation in which successive measurements

of spin-component (in the c and a directions) have been performed on parti-
cle 1 of an individual Bohm-EPR pair, while successive measurements of spin-
component (in the d and b directions) have been performed on particle 2 of
that pair. By assumption, each of these measurements has a definite, physical
outcome registered, recorded and experienced by an experimenter in his or her
laboratory. Finally suppose that this entire situation is repeated very many
times, each time with a different Bohm-EPR pair, giving rise to a statistical
distribution of results for the four outcomes in each trial.
We may use quantum theory to predict the corresponding probability distri-

bution by applying the Born rule to appropriate quantum states. From Alice’s
perspective, events in a given trial unfold in the following sequence. At time t0
the particles are in state

|ψ〉 =
1√
2

(|↑〉1 |↓〉2 − |↓〉1 |↑〉2) (21)

while C,D are in states |ready〉C , |ready〉D respectively. Then Dan measures
the d-spin of 2 by means of a unitary interaction Û2

D as follows

Û2
D |↓d〉2 |ready〉D = |d-down〉2D (22)

Û2
D |↑d〉2 |ready〉D = |d-up〉2D .

So at time t1 when Dan has recorded the definite outcome as either d-down or
d-up, Alice assigns the following state to 12D

Ψ1 =
1√
2

(|↑d〉1 |d-down〉2D − |↓d〉1 |d-up〉2D). (23)
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Shortly after t1 Carol measures the c-spin of particle 1 by a unitary interaction
Û1
C

Û1
C |↓c〉1 |ready〉C = |c-down〉1C (24)

Û1
C |↑c〉1 |ready〉C = |c-up〉1C .

So at time t2 when Carol has recorded the definite outcome as either c-down or
c-up, Alice assigns the following state to 12DC

Ψ2 =
1√
2

(Û1
C |↑d〉1 |ready〉C |d-down〉2D − Û

1
C |↓d〉1 |ready〉C |d-up〉2D) (25)

Next Alice “undoes”the effects of Carol’s measurement by applying an interac-
tion between 1 and C with unitary Û1†

C , and assigns the state Ψ3 at time t3 to
12D (which is no longer entangled with that of C)

Ψ3 =
1√
2

(|↑d〉1 |d-down〉2D − |↓d〉1 |d-up〉2D). (26)

Shortly after t3, Alice measures a-spin on 1 and at time t4 gets a definite, phys-
ical outcome of either a-down or a-up. Then Bob “undoes”Dan’s measurement
on particle 2 by implementing an interaction in accordance with unitary Û2†

D , be-
fore measuring the b-spin of 2 and at time t5 getting a definite, physical outcome
of either b-down or b-up.
By applying the Born rule to the Bohm-EPR spin-state at t0, Alice predicts

the probabilistic correlation function E(c, d) for Carol’s and Dan’s measurement
outcomes

E(c, d) = − cos(c− d). (27)

To predict the correlation function E(a, d) for Alice’s and Dan’s measurement
outcomes, Alice reasons as follows. If Carol had performed no measurement and
C and 1 had never interacted, then between t1 and t4 Alice and Dan would just
have been recording a correlation between outcomes of an a-spin measurement
on 1 and an earlier d-spin measurement on 2– a standard Bell experiment with
settings and measurements performed at timelike separation. For such a case,
the Born rule predicts

E(a, d) = − cos(a− d). (28)

In the present case, C and 1 interacted twice between t1 and t4, but these
interactions had no overall effect on the state of the joint system 12D at the
time when Alice performed her measurement of a-spin: its state was the same
at t3 as it had been at t1 (Ψ3 = Ψ1). It follows that in the present case also
quantum theory predicts the correlation function

E(a, d) = − cos(a− d). (29)

After the effects of Dan’s measurement on 2 have been “undone”by Bob’s
implementation of the interaction Û2†

D , Alice should again recognize that the
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outcomes of her measurement of a-spin on 1 and Bob’s spacelike-separated
measurement of b-spin on 2 constitute a record of a correlation in a standard
(spacelike separated) Bell experiment, with predicted correlation function

E(a, b) = − cos(a− b). (30)

So far we have been considering the events involved in a single trial from
Alice’s perspective. But those same events should also be considered from the
perspective of Bob. If the labs of Alice, Bob and friends are all in the same
state of motion, then the events we have considered will play out in the same
sequence also from Bob’s perspective. But it is well known that the time-order
of spacelike separated events is not invariant under transformations of inertial
frame.
Suppose that Alice’s lab and Carol’s lab are in one state of motion relative to

frame F (moving to the right at speed v, say), while Bob’s lab and Carol’s lab are
in a different sate of motion (moving to the left at speed v, say). To make sure
that Alice is in position to manipulate 1 and C we may assume that they both
remain inside, and move together with, Alice’s lab A: and to make sure that
Bob is in position to manipulate 2 and D we may assume that they both remain
inside, and move together with, Bob’s lab B. This arrangement is depicted in
Figure 1. Relative to the state of motion of Bob and Dan, the same events play
out over a period marked by the sequence of times 〈t∗0, t∗1, t∗2, t∗3, t∗4, t∗5〉.

Figure 1: Spacetime diagram for third argument
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Note that in the ∗’d frame Carol’s measurement precedes Dan’s and Bob’s
precedes Alice’s. Most important, note that the state of 12C is the same at t∗3 as
at t∗1. Paralleling Alice’s reasoning, Bob should therefore conclude that in this
situation the correlation function for his outcome when measuring the b-spin of
2 and Carol’s outcome when measuring the c-spin of 1 is E(b, c) = − cos(b− c).

It is a central assumption of this third argument that every spin measure-
ment by Alice, Bob, Carol or Dan has a definite, physical outcome– either spin
up or spin down with respect to the chosen direction. It follows that in a long
sequence of trials of the Gedankenexperiment just described there will be a sta-
tistical distribution of actual outcomes, with a set of outcomes that may be
labeled 〈a, b, c, d〉 in each trial. Statistical correlations between pairs of actual
experimental outcomes may be represented in the usual way by statistical corre-
lation functions corr(a, b), corr(b, c), corr(c, d), corr(a, d). It follows that these
statistical correlations will satisfy the inequality

|corr(a, b) + corr(b, c) + corr(c, d)− corr(a, d)| ≤ 2. (31)

Note that no locality assumption is required to derive this inequality here, since
it is mathematically equivalent to the existence of a joint distribution over the
actual, physical outcomes whose existence has been assumed [17].
But we saw that quantum mechanics predicts probabilistic correlation func-

tions E(a, b), E(b, c), E(c, d), E(a, d) for these pairs of outcomes that may be
compared to the inequality

|E(a, b) + E(b, c) + E(c, d)− E(a, d)| ≤ 2. (32)

It is well known that quantum theory predicts violation of inequality (32) for cer-
tain choices of directions a, b, c, d. If the particles and labs of the experimenters
in the Gedankenexperiment had been at relative rest, then the choice of four di-
rections in a plane defined by rotations of a◦ = 0◦, b◦ = 45◦, c◦ = 90◦, d◦ = 135◦

from a fixed axis would yield maximal violation of (32) with predicted value

|E(a, b) + E(b, c) + E(c, d)− E(a, d)| = 2
√

2. (33)

The relativistic relative motion of labs and particles makes it necessary to take
account of the associated Wigner rotation of vectors, affecting the predicted
value for this choice of directions. But the inequality is still maximally violated
for a different choice of directions5 .

5 [18] specifies the necessary directions in section 4. Rather than being coplanar (with
respect to frame F ) these may be chosen to lie on a cone centered on the direction of motion
of the lab in which that spin measurement is performed.
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5 Conclusion

Each of the three arguments analyzed in this paper sought to establish a contra-
diction between the universal applicability of unitary quantum theory and the
assumption that a well-conducted quantum measurement always has a definite,
physical outcome. The first argument succeeded in doing so only by implicitly
relying on assumptions that the work of Bell [9] and Kochen and Specker [19]
gives us good reasons to reject– in Einstein’s [20] words, that in the circum-
stances described in the associated Gedankenexperiment the individual system
(before the measurement) has a definite value for all variables of the system,
and more specifically, that value which is determined by a measurement of this
variable. Failing some such naive realist assumptions, nothing justifies the ar-
gument’s application of quantum theory to predict probabilities for outcomes
of hypothetical measurements which would be incompatible with those actually
performed.
Though it does not rely on such naive realist assumptions, the second argu-

ment also depends on a superficially plausible assumption about the outcomes
of counterfactual measurements I called intervention insensitivity, according to
which the truth-value of an outcome-counterfactual is insensitive to the occur-
rence of a physically isolated intervening event. But in the circumstances of the
associated Gedankenexperiment, intervention insensitivity is itself incompatible
with the universal applicability of unitary quantum theory. Since a contradic-
tion then follows even if each (well-conducted) quantum measurement does not
have a definite, physical outcome in the Gedankenexperiment, the argument
does not establish its intended conclusion.
Unlike the first two arguments, the third argument relies on no implicit

assumptions about the outcomes of hypothetical measurements, since all the
outcomes it considers are assumed to be actual. I think it succeeds in showing
that, in the circumstances described in the associated Gedankenexperiment, the
universal applicability of unitary quantum theory implies (with probability ap-
proaching 1) that there is no consistent assignment of values to the (supposedly
definite, physical) outcomes of the measurements in the sequence of trials there
considered.
This result prompts further reflection on how to understand quantum the-

ory. But the circumstances of the Gedankenexperiment in the third argument
are so extreme as forever to resist experimental realization. There are no fore-
seeable circumstances in which the argument would require us to deny that a
well-conducted quantum measurement has a definite, physical outcome. The
arguments considered in this paper give us no reason to doubt the sincerity or
truth of experimenters’reports of definite, physical outcomes. But I think the
third argument should make us reconsider the extent and nature of their objec-
tivity. This paper was intended to both motivate and prepare the way for the
pursuit of that project.
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6 Appendix

In restating the argument of ([12], [13]) I have changed the notation to try to
make it easier to follow. The following table supplies a translation between my
notation and that used in [13].

Agent Lab Measured System Measured observable Other observable

F̄ !Xena L! X R! c heads/tails! f

F !Yvonne L! Y S! s up/down! Sz

W̄ !Zeus •! Z L̄! X w̄! z •! x

W !Wigner •!W L! Y w! w •! y

Readers familiar withWigner’s original “friend”argument [10] will be primed
to attribute extraordinary powers to the experimenter I have namedWigner, and
I thought it appropriate to name a second character with such almost “God-like”
powers Zeus. This naturally suggested also giving the experimenters charged
with less extraordinary tasks names whose initial letters are also at the end of
the alphabet, with corresponding labels for their labs and measured observables.
While such changes are merely cosmetic, my restatement deliberately lacks

one feature emphasized by the authors of the argument of [13] that they call
“consistent reasoning”, illustrate in their Figure 1, and formalize in their as-
sumption (C). Both in the original and in my restatement it is Wigner (W )
whose reasoning is the ultimate focus of the argument. But the authors of the
original argument consider it important that Wigner’s reasoning incorporates
the reasoning of the other experimenters (via assumption (C)).

It is vital to check whether Wigner’s reasoning is both internally consistent
and consistent with the reasoning of the other experimenters in this Gedanken-
experiment. My restatement makes it clear how Wigner can consistently apply
quantum theory without considering the reasoning of any other experimenters.
But are the conclusions of this independent reasoning by Wigner consistent with
those of the other experimenters, based on their own applications of quantum
theory? Indeed they are, provided each experimenter has applied quantum the-
ory correctly. The problem with the argument of Frauchiger and Renner is that
one experimenter (Xena/F̄ ) has applied quantum theory incorrectly.
Recall step 4* of the reasoning in my restatement of this argument (see §3).

I attributed this reasoning to Wigner, while pointing out that Zeus’s subsequent
measurement of z renders it fallacious. Frauchiger and Renner initially attribute
parallel reasoning to Xena/F̄ and then use assumption (C) to attribute its
conclusion also to W igner. To see where things go wrong if Xena/F̄ reasons
this way, I quote from [13].
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“Specifically, agent F̄ may start her reasoning with the two state-
ments

sF̄I = “If r = tails at time n : 10 then spin S is in state |→〉S at time n : 10”

sF̄M = “The value w is obtained by a measurement of L w.r.t.{πHok, πHfail}”.”

They conclude that F̄ can infer from sF̄I and s
F̄
M that statement sF̄Q holds:

sF̄Q = “If r = tails at time n : 10 then I am certain that W will observe w = fail at n : 40”.

Starting with sF̄Q, they then apply assumption (C) to the reasoning of the
other agents successively, eventually to establish that W igner may conclude

sW2 = “If w̄ = ok at time n : 30 then I am certain that I will observe w = fail at n : 40”,

which (given (S)) is inconsistent with W’s independent conclusion (based on
assumption (Q))

sWQ =“I am certain that there exists a round n ∈ N≥0 in which it is
announced that w̄ = ok at time n : 30 and w = ok at n : 40.”

But this chain of reasoning is based on a mistaken starting point, since F̄
has applied quantum theory incorrectly in asserting statement sF̄Q. Compare s

F̄
Q

with the corresponding conclusion of Wigner’s fallacious reasoning in step 4* of
§3:

“If the unique outcome of Xena’s measurement of f on c at t = 0
had been “tails”, the unique outcome of my measurement of w on
Y at t = 4 would have been “fail”.

Agent F̄’s reasoning was equally fallacious here. The problem starts with
statement sF̄I : F̄ is correct to assign state |→〉S to S at time n : 10 for certain
purposes but not for others. Suppose, for example, that F̄ had “flipped the
quantum coin R”by passing that system through the poles of a Stern-Gerlach
magnet. By applying unitary quantum theory, F̄ should conclude that this will
induce no physical collapse of R’s spin state but entangle it with its translational
state, and thence with the rest of her lab [21]. So while F̄ would be correct
then to assign state |→〉S to S at time n : 10 for the purpose of predicting the
outcome of a subsequent spin measurement on S alone, she would be incorrect
to assign state |→〉S to S at time n : 10 for the purpose of predicting correlations
between S (or anything with which it subsequently interacts) and her lab L̄ (or
anything with which it subsequently interacts).
By using the phrase ‘is in’, statement sF̄I ignores the essential relativity of

S’s state assignment at time n : 10 to these different applications. By using sF̄I
to infer sF̄M , agent F̄ is, in effect, taking F̄’s coin flip to involve the physical
collapse of R’s state rather than the unitary evolution represented by equation
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(8). So agent F̄ is mistaken to assert sF̄Q, and W would be wrong to incorporate
this mistake in his own reasoning by applying assumption (C).
Frauchiger and Renner [13] justify F̄’s inference from sF̄I and s

F̄
M to sF̄Q by

appeal to assumption (Q). I have argued that F̄ is not justified in asserting sF̄Q,

since F̄ is justified in using the state assignment licensed by sF̄I for the purpose
of predicting the outcome of a measurement on S only where S’s correlations
with other systems (encoded in an entangled state of a supersystem) may be
neglected. But the sequence of interactions in the Gedankenexperiment succes-
sively entangle the state of S with those of R, L̄, L and W̄ . So in reasoning
about the outcome of W’s measurement of w, F̄ must take account of this
progressive entanglement of the states of S and W̄ .

Specifically, to predict the outcome of W’s measurement of w, F̄ must rep-
resent that measurement as the second part of W’s joint measurement on the
system W̄ + L. This interaction between W and W̄ was represented in §3 as
the apparently innocuous Step 1 in which Wigner simply asked Zeus what was
the outcome of his measurement. But it is not this interaction but the prior
interaction between W̄ and L that undercuts F̄’s justification for using the state
assignment |→〉S in inferrring sF̄Q from sF̄I and s

F̄
M . Only by neglecting the prior

interaction between W̄ and L can F̄ draw the erroneous conclusion sF̄Q.
W igner can reason consistently about the unique, physical outcomes of all

experiments in the Gedankenexperiment of ([12], [13]) without any appeal to
the reasoning of the other agents involved. Each of these other agents may
reason equally consistently. And their collective reasoning is perfectly in accord
with assumption (C) as well as the universal applicability of unitary quantum
theory and the existence of a unique, physical outcome of every measurement
that figures in the Gedankenexperiment of ([12], [13]).

Acknowledgement 1 Thanks to Jeff Bub for a helpful correspondence on Frauchiger
and Renner’s argument, to Časlav Brukner for conversations and correspon-
dence over several years, and to a reviewer for good strategic advice.

21



References

[1] Fuchs, C. [2010] “QBism, the perimeter of quantum bayesianism”,
arXiv:1003.5209.

[2] Fuchs, C., Mermin, N. D. and Schack, R. [2014] “An introduction to QBism
with an application to the locality of quantum mechanics”, American Jour-
nal of Physics 82, 749—54.
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